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ABSTRACT

A fully factorized two-dimensional Navier-Stokes flow solver has been

developed and applied to the problem of predicting subsonic airfoil flutter in the

light stall regime. The inviscid fluxes are evaluated with a central difference

ADI scheme and fourth and second order numerical dissipation is used to obtain

oscillation-free solutions. The performance of algebraic and one-equation

turbulence models in predicting separated flow is explored for computing high

Reynolds number steady flow and unsteady flows over an oscillating NACA 0012

airfoil. Comparisons of the computed results with available experimental data

indicate that even though the lift response is fairly well predicted, the

computation of the pitching moment hysteresis loops is very sensitive to

turbulence modeling. Results computed with several current models are in good

agreement whenever the steady stall angle is exceeded only slightly. However,

they fail to capture the vortex shedding process leading to the onset of stall

flutter.
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I. INTRODUCTION

A. BACKGROUND

The development of numerical solution methods for two-dimensional

Navier-Stokes equations during the past few years provides new tools for the

investigation and prediction of airfoil flows. Of great interest is the study of flow

separation on airfoils in unsteady motion which is usually referred to as the

dynamic stall phenomenon. McCroskey et al [Ref. 1] performed a series of

careful experiments which serve as valuable benchmark data. More recently,

Lorber and Carta [Ref. 21 contributed important additional experimental

dynamic stall information for a Sikorsky airfoil. They also investigated incipient

torsional stall flutter [Ref. 31 and found that small-amplitude airfoil oscillations

near static stall may be unstable.

For a pitching airfoil the instantaneous work done on the fluid by the airfoil

due to its motion is the product of the pitching moment about the axis of rotation

and the differential change in angle of attack. This product usually is a positive

quantity. However, if the net work per cycle of oscillation were to become

negative then the fluid would be doing work on the airfoil. Once the airfoil

begins to extract energy from the freestream, the amplitude of the oscillation

will grow and finally diverge. This condition is known as stall flutter. Normally,

flutter of an airfoil is due to a combination of torsion and bending. However, in

this case flutter is caused by a single degree of freedom oscillatory motion.

During a cycle of oscillation the lift coefficient and the pitching moment

coefficient plotted versus angle of attack produce a hysteresis loop. It is the



pitching moment hysteresis loop that provides an indication of incipient stall

flutter. As shown by Carta and Niebanck [Ref. 4], clockwise pitching moment

loops represent negative aerodynamic damping and therefore cause oscillations

of a free airfoil to grow in amplitude, while counterclockwise loops cause such

oscillations to decay. Hence torsional flutter will occur as soon as the area of

the clockwise loop exceeds that of the counterclockwise loop. The

aerodynamics of small-amplitude airfoil torsional oscillations near stall need to

be investigated experimentally and computationally in order to examine the stall

flutter mechanism.

B. PURPOSE

The first objective of this investigation is to test an unsteady, compressible

Navier-Stokes code (Ns2.f) using an Alternating-Direction-Implicit (ADI)

scheme based on the the Beam-Warming [Ref. 5] approximate factorization

method to determine its ability to obtain realistic airfoil flow solutions for a

variety of flow regimes is examined. The accuracy of the numerical solution is

investigated by comparing the computed solutions with available experimental

data. Test cases include steady-state flow solutions at various flow speeds and

angles of attack, as well as, unsteady flow solutions over rapidly pitching and

harmonically oscillating airfoils. In addition, the accuracy of the Navier-Stokes

solutions are further explored by comparing each case with an unsteady,

inviscid, incompressible, panel code (U2diif.f), and with a steady,

incompressible, viscous/inviscid interaction code (Incompbl.f). The final and

principal objective of this study is to determine the influence of mildly separated

flow during part of a harmonic oscillation cycle on blade stability. Results are

presented for NACA 0012 airfoils showing the influence of various parameters.

2



Flow field details are also included in order to provide a better understanding of

certain flow features that may lead to stall flutter.
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II. GOVERNING EQUATIONS

The continuity equation, the momentum equation, and the energy equation

must be solved simultaneously in order to obtain a flow solution of a

compressible viscous fluid about a body. A complete derivation of these

equation can be found in various texts, eg., Anderson [Ref. 6]. However, main

steps of the derivations are presented in the following sections.

A. CONTINUITY EQUATION

The continuity equation is the result of applying the physical principle of the

conservation of mass to a finite control volume fixed in space. Simply stated

the net flow out of a control volume through its bounding surface must be equal

to the time rate of change of the mass inside the control volume. For any

arbitrary control volume, the continuity equation can be expressed as

t ( =(1)

which for a two-dimension Cartesian Coordinate system becomes

dp +(pu) (pw)
dt dx dz (2)

B. MOMENTUM EQUATIONS

The equation for the conservation of momentum is obtained by applying

Newton's second law, which state that the net force acting on a fluid particle is

equal to the time rate of change of linear momentum of the fluid particle. In
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Cartesian coordinates the momentum equations can be expressed as follows

d(pu) d(pU2 +p) d(puw) dz,,+dr,,,
-- a- + dx -N 7i(3)

and in the y-direction.

d(pw) +d(puw) + dW2+P) + -z(
07- -07- -- Di -07 7T(4)

Stress terms are as follows

=.X2 ob w

0- z (5)

C. ENERGY EQUATION

The conservation law form of the energy equation is derived by applying

the first law of thermodynamics (dE=dQ+dW) to a fluid particle. This leads to

"+N [(E+ p)u] + IIE +plwJ=

-z (6)

where the total energy per unit volume and the heat flux are given by

E = (e + 1/2V 2 )p, 41 =-k r/dxi (7)

Here k is the thermal conductivity.
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D. CONSERVATION FORM OF GOVERNING EQUATIONS

The starting point for the numerical algorithm which is presented in the next

section is the strong conservation law form of the two-dimensional Navier-

Stokes equations. The non-dimensionalized vector form of the governing

equations in conservation law form for a Cartesian coordinate system is:

dtd-Red dz (8)

where,

FP I Fpu 1 [pw 1 Fo l Fo lI pu I pu2+ pI I pwu I Ir. I Ir)
q=jpw F=1puw I, G= PW2 I F ,: 1 G  r x 1

Le I Le+p)uj [(e+p)wJ LfZ I Lg4  (

with,

4(l
T,'x Tu ux - wz)

T.- (u, - w.)

P 2f4 =  U "T,, + wrx. + PrU -1a 2
Pr(y -1)

_ _ 2

94 = wv" + wv"+ Y a2
Pr(y-l) (10)

Here the pressure is related to the conservation variables of q by the equation

p = (y -lie - 0p(u' + V2)] 11
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where y = 1.4 is the ratio of specific heats, and a is the local speed of sound

given by, a2 = f p / p.

The density and the velocities are non-dimensionalized with the freestream

density p. and the free stream speed of sound a., respectively. The total

energy is normalized by a,,.2po. The time (t) scales as t* = t a., / c, where (c)

is a characteristic length, such as the chord length. The Euler equations are

obtained from Equation (8) by dropping the viscous terms. The strong form is

chosen because it enables shock capturing.
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III. SOLUTION METHODS

A. POTENTIAL FLOW METHOD (U2DIIF.F)

For inviscid incompressible flow the conservation equations reduce to the

Laplace equation which can be solved in a number of ways. We present here a

brief outline of the widely used panel method for both steady and unsteady

airfoil flow.

1. Panel Method for Steady Airfoil Flows

The frame of reference for the formulation of the steady flow problem

is a fixed (x,y) coordinate system located at the leading edge of the airfoil. The

freestream velocity is represented by +V. and the x-axis passes from the

leading edge through the trailing edge of the airfoil.

In order to formulate a method for computing the flow around an

airfoil, the airfoil surface is divided into (n) straight line segments or panels. The

end points of the panels are called nodes, and since there are (n) panels there

are then (n+l) nodes. Complex airfoil geometries can therefore be modeled

with a greater number of nodes and panels. The trailing edge panel is the first

panel, and the next panel continues on the lower surface in a clockwise manner

until the nth panel is reached at the trailing edge of the upper surface.

Now that the frame of reference has been specified, two additional

vectors must be defined, the unit normal vector hi, which is always

perpendicular to the (ith ) panel and directed outward from the airfoil surface

and the unit tangential vector ti, which is parallel to the (ith) panel and is

directed from the (n) node to the (n+l) node.
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Two types of singularities are sufficient to model lifting airfoil flows.

U2diif.f places uniform source distributions qj and a uniform vorticity distribution

y on each of the j-panels. Both singularities satisfy Laplace's equation, a linear

homogeneous second order partial differential equation. Since the solutions to

linear PDE's can be superimposed on each other, a simple flow can be added to

another simple flow and so on, until a very complicated flow field is created.

The flow field around an airfoil, represented by the velocity potential,

can be constructed from the potential of the freestream flow added to the

velocity potential of source and vorticity distributions, hence

=P- +(P, + T,, (12)

where,

qp-V_ +(x cosa+y sina)
(13)

f --. )lIn rds
(14)

(p, =-J s'0ds
(15)

summation of the three potentials yields

(D = V,(x cosa+y sin a)+Jf q rd(s) s)2;r 21r(16)

Equation (16) can now be evaluated at any point in the flow field by evaluating

the integrals along the airfoil contour (s), where the flow field point is located at
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a distance (r) at an angle (0) measured from a point on the airfoil. Introducing

n panels and then summing the contributions of each panel yields

c1=V-+(x cosa+y sina)+X I rq -L 9dsj= panel 2r 2r ) (17)

Once the boundary conditions are defined the system of (n) equations can be

solved for (n+l) unknowns.

Next, it is useful to introduce the concept of influence coefficients. An

influence coefficient is the velocity induced at a point in the flow field (field

point) by a unit strength singularity, source or vorticy, placed anywhere within

this field. U2diif.f places these points on each panel. A detailed description of

the use of influence coefficients is found in Teng [Ref. 7].

For the steady flow problem the influence coefficients are given in

Table 1.

TABLE 1. INFLUENCE COEFFICIENTS

Anij Normal component induced at ith control point by

unit source distribution on jth panel.

Atij Tangential component induced at ith control point

by unit source distribution on jth panel.

Bnij Normal component induced at ith control point by

unit vorticity distribution on jth panel.

Btij Tangential component induced at ith control point

by unit vorticity distribution on jth panel.

Oij Angle of control point (i) and panel (j) measured

from x-axis.
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There are only two boundary conditions that must be satisfied in order

to solve the lifting airfoil flow poblem. The first boundary condition is the

condition that the flow remains tangent to the airfoil surface and the second

condition is that the pressures on the upper and lower trailing edge panels must

be equal. This condition is known as the Kutta condition. Pressure is related to

velocity through Bernoulli's equation for steady potential flow, which allows the

Kutta condition to be expressed as

(v anent = -(Van gent) (18

The flow tangency condition is expressed as

(V"°normal=Q i= 1,2 n

(19)

Equation (18), the Kutta condition, using the influence coefficient concept is

expressed as follows

[A .qj]- y X[B;J - V.cos (a - 01=
J=l j=

1

[A',q,+ y [Bj + V cos(a - 0)
J=I 3=1 (20)

Equation (19) the flow tangency condition, becomes, using the influence

coefficient form

n

+ X[BJ+ V.sin(a-0,)=0, i= l,2,
j=1 (21)
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These equations can then be written in the following matrix form

F a,,, . . . a , lFq F b, 1
I H q2  I I

I .. nj I .+.. I I
ana n+in+j L 7 [.b+J (22)

and solved with the method of Gauss Elimination with Partial Pivoting.

2. Unsteady Numerical Formulation

A brief and concise description of the unsteady numerical formulation

is found in Krainer [Ref. 8]. To model unsteady flow around an airfoil using the

panel method, N unknown source strengths and one unknown vorticity strength

are located along the airfoil, a wake panel of unknown vorticity strength, length

and orientation is attached to the trailing edge of the airfoil. This makes a total

of N+4 unknowns. The flow tangency requirement at each of the N panels

represents a system of N equations. Using influence coefficients and using the

subscript k to count time, the tangential flow condition of the ith ele:nent is

written as follows

( An-qk + ,Ykn+ [(V_+ (U(t)i+V(t)j)+Q2(t)(xi - 3J)) n,]

+y) (3 F 1=0 i=l,2,..., n
+( ik(,n + 1 )k + I[(. )(r'- r- )k,

,kI=l! (23)

where V. is the mean velocity, (U(t)i + V(t)j) is a time dependent translational

velocity and Q(t) is a rotational velocity. The vectors i and j are in the airfoil

fixed coordinate system.
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The Kutta condition is a single equation that determines the circulation

around the airfoil. In this case the pressures at the upper and lower surface are

equated at the midpoints of panels adjacent to the trailing edge (i.e., the first and

last panel)

2 2 Fd(o, -0.)] F /k k-
2 ra,1o ?)l =,k -[(ik' [( k 2 2L k~ =21'

dk k- (24)

The Helmholtz theorem is another single equation that provides a

relation for the strength of the vorticity distribution along the wake element.

The Helmholtz theorem states that any change in circulation around an airfoil

must be countered by a change in vorticity in the wake of equal magnitude but

of opposite sign. This theorem can be written as follows

(1 -A)(25)

where I is the length of each individual wake element and y its vorticity

strength. Therefore, the vorticity in the wake element is equal to the negative

change in circulation around the airfoil with respect to the k-I timestep.

To acquire the two additional equations required to solve for the N+4

unknowns, assumptions about the geometry of the wake panel are made. First,

the wake panel is oriented in the direction of the local resultant velocity at its

midpoint, as viewed in the (moving) airfoil frame of reference.

tank -
(26)
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(vYw)k and (vXw)k are the x- and y-velocity components at the midpoint of

each wake panel. Second, the length of the wake panel is assumed

proportional to the magnitude of the local resultant velocity at its midpoint and

to the timestep.

y 2

AktK-tk-1)

(27)

The nonlinearities in the Kutta condition and in the wake panel

assumptions necessitate an iterative solution procedure.

B. VISCOUS/INVISCID INTERACTION METHOD
(INCOMPBL.F)

The theory and numerical methods presented in this section are taken from

the work of Cebeci and Bradshaw [Ref. 9] and the investigations performed by

Krainer [Ref. 81 and Snir [Ref. 10] As stated in the introduction the results

from the Navier-Stokes code (Ns2.f) were compared with a viscous/inviscid

interaction method code (lncompbl.f) made available by Cebeci. An

abbreviated description of this method is given in this section. For a complete

description see the original publications, References 8 and 9.

The governing principle behind the viscous/inviscid interaction method is an

approximation to the Navier-Stokes equation that allows a flowfield to be

divided into an inner viscous region and an outer inviscid region when the

Reynolds number is sufficiently large. This concept of a thin viscous layer near

the surface of a body and an outer region where these viscous effects are small

compared to the inertial effects is known as the boundary layer theory. Unlike

the Laplace equation, which is the governing equation for potential flow, the

14



thin shear layer equations are nonlinear

01dv

& due d V( v 1

dx~ dx y[v 6J
(28)

with the boundary conditions

y--O, u=v=0,

y=o,, U=ue(x) (29)

The direct boundary layer method solution to the boundary layer equations

by the Keller Box Method involves four steps. First the boundary layer

equations are transformed into a system of first order differential equations.

Next the Keller box method is used to approximate the first order differential

equations by simple centered differences and two-point averages, using values

at the corners of one difference molecule only. Newton's method is used to

linearize the resulting algebraic equation. The Keller block elimination method

is then used to solve the resulting block tridiagonal system. The procedure

described above does not provide solutions to flows that are separated or have

regions of reverse flow.

1. Interaction Method

The interactive boundary layer method provides a special coupling

between the inner viscous flow and the outer inviscid flow, which enables

reverse and separated flows to be calculated. In such areas, the external

15



velocity is substantially changed by the viscous effects and can no longer be

considered as a known boundary condition for the boundary layer flow.

The general approach to the solution is the same as for the direct

method with modifications. Since the outer flow is unknown, the velocity at the

edge of the boundary layer is given by the interaction law and is written as

U(x,Y)=Ui d(u"S.) d4

r d C (30)

where ue(X,ye) is the total velocity at the edge of the boundary layer, uel(x) is

the velocity computed by the inviscid panel method, 8" is the displacement

thickness, and the integral term is known as the Hilbert integral.

The following transformations are used to transform the boundary

layer equation into a system of first order differential equations

x -
~~7 ?i:IW i RL=UVL V

1 w= ue(x,y)
(31)

The boundary layer equation takes the form

f =U, U'=V, W'=0,

W + W0V= x V
(32)

with boundary conditions:

71=0, U(x,0)=O, f(x,O)--O,

11=11e, U(x,lle)=W(x,rle) (33)
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The velocity at the edge of the boundary layer now becomes

wx u7 (x l F f(4q)
W(X,fle) u()1J 4 1~fe7e-(~n

Uo (34)

The finite difference box method is used to solve the equations, in the

same way it was used for the direct case, but with two additions. First in areas

of flow reversal the uau/ax is omitted to assure stable integration. And second,

the edge velocity is approximated by the relation presented in the next section.

By using central differencing to approximate the differential equations,

a system of nonlinear algebraic equations is obtained for the unknown variables

(which are f, U, V, and W). To solve the system of equations, the system is

linearized by the Newton iterative procedure, and the resulting linear system is

solved for the new unknown variables which are the increments 5f, 8U, 8V, and

6W.

The solution procedure is repeated until the change in the increments

is negligible compared to the preceding iteration. The iterative process is

performed again at the next downstream station.

2. Interactive Model

The interactive model is used to couple the boundary layer to the

external flow. It is nceded in areas where strong interaction occurs, and both

the boundary layer and the outer flow must be solved simultaneously. The

external velocity is assumed to consist of a potential flow term and a correction

term due to viscous effects. [ue(x)=Uel(x)+UeS(x)]
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The normal velocities at the surface of the airfoil, induced by sources

distributed on the surface, displace the streamlines from the surface in the same

way that the actual boundary layer displaces them.

Several assumptions are made in order to express the correction term

in the form of the Hilbert integral. First, the surface is approximated to be a flat

plate, and the normal velocity is then half the local source strength G(x).

Second, the inviscid velocity does not change across the boundary layer.

Therefore, the local horizontal velocity induced by the source distribution, is the

correction term to the inviscid velocity, and can be represented by the Hilbert

integral
I f ca(4 I df dI(e)4-

x(35)

The integration is carried out on all the sources on the surface. The Hilbert

integral is then approximated by a finite series

K-4 (36)

where cik is a matrix of interaction coefficients which are functions of the

geometry only.

Since the computation of ue6 involves values of 5" downstream of the

current x location, which are not known yet, these terms are taken from the

previous iteration using a relaxation formula.

3. Turbulence Model

The turbulence model used in the code is the Cebeci-Smith model

[Ref. Il] and Michel's method is used to predict the transition from laminar to

turbulent flow.
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C. EULER AND NAVIER-STOKES CODE (NS2.F)

In order to facilitate the numerical implementation for arbitrary complex

flow domains, the Navier-Stokes equations are transformed to a generalized

coordinate system, ( using the transformations

"= (x'z) (37)

The grid spacing in the curvilinear space is uniform and of unit length so that

unweighted differencing schemes can be employed for the numerical

implementation. The grid points in the Cartesian system, referred to as the

physical domain, correspond via a one to one relationship to the points of the

curvilinear transformed system, referred to as the computational domain.

Singularities of the transformation may occur on the computational boundaries.

Such singularities occur for grids with multiple connected regions. The

transformation of the governing equations from the physical domain to the

computational domain is obtained in most cases by numerically evaluating the

metrics and the Jacobian of the transformation. The derivatives with respect to

the x, y variables can be expressed in terms of the new variables by the chain

rule.

d d d

= d~ +C d
d z -' (38)
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The metrics and the Jacobian of the transformation are given by

4x = J z , x = J z4, (39)

z = j x , x = J x4, (40)

(41=(x~zc N xz4) (41)

The Navier-Stokes equations written in generalized curvilinear coordinates

retain the strong conservation law form expressed by Equation (8). The

governing equation for generalized curvilinear coordinates is

dt d+7d4= Re[T +-dJ ( 42)

The conservation variable vector q and the inviscid fluxes F and G in the

transformed space are given by

Fp [ FPU 1 FpW
l'pu I lpUU +p 1 IpWu + Ixp

q=1pwl, F= I PwU+,p I' G=TjpwW+ p

Le I L(e+ p)U- pj Lte+p)W- ' p (43)

where U and W are the contravariant velocity components along the { and

directions respectively, given by:

U =4 ++ U+.w, W = +.u + W (44)

The viscous flux terms are transformed as

(, +, ) 4 ,G =(' + ', ,)2 (45)
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with the stress terms from Equation (10) expressed in terms of the transformed

variables , as

X3 L 2=, :- L( +¢'u+ ,w,) +41w )

. rda2 0 21
f4 =u r, + wVr,, + p 1| a

AL F da2  . 21
g, =,+wr + Pr(y -1 ) d4 -+C_ (46)

When the thin layer approximation [Ref. 121 to the two-dimensional

conservation law form of the governing equations is applied, they take the

following form

d t d " T= Re[ d (47)

where,

Fp 1 FpU 1 FpW 1
I 1u 1 puU + .p I 1 IpWu+' p

q=7pw JI PwU+ 'p I' =-IPwW+ 'P

eIIII[e J L(e+ p)U- pj L(e + p)W - p1 (48)
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The viscous flux term is transformed as

( o1 /z mju,+(ju/3)m2 i
JU ' m mlw + (ju/3)m, ,.

ku mm 3 + ( / 3)m2 m4, (49)

Here,
m 1 x + C2

m2 =4u + Zw;

I wd2  1 Fda2l

m 3 = f7xU + W /2'1w
m 4= u+ W(50)

1. Numerical Grids

In order to compute flow solutions of partial differential equations

(such as the Navier-Stokes Equations) with finite differences, a discretized

version of the physical domain must be generated. During the course of this

investigation, several different NACA 0012 airfoil C-type grids were generated

using two different grid generation methods. A grid generation code call

GRAPE that uses the Poisson differential equation was used in the early stages

of investigation. The inviscid and viscous grids shown in Figures 1 and 2 were

generated from an algebraic grid generation code. Note the finer resolution of

the viscous grid near the airfoil surface. This resolution is required to

accurately represent the boundary layer. The flow solutions presented in

Chapter IV were computed by using the grids shown in Figures 1 and 2. The
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advantage to using an algebraic grid , vice a PDE method or a conformal

mapping method, is that it is computationally efficient.

A simple description of the algebraic grid generation method is offered.

First the airfoil surface coordinates are unwrapped to form a simple curve, by

separating the lower trailing edge from the upper trailing edge. This curve is

the starting point for the generation of the computational domain. Lines are

drawn normal to the curve and grid points are then located at intervals on these

lines. Lines may be clustered near the leading or trailing edge of the airfoil; or

at some other area of interest, eg., a shock location. The resolution of the

points normal to the surface is achieved by the use of an algebraic function that

provides uniform stretching normal to the body surface. Once the grid is

created in the computation domain it is then transformed back into the physical

domain using inverse transformations.
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2. The Numerical Scheme

The integration in time is performed implicitly with a second order

accurate scheme of the form

Aq =q n+-q n (Aq)+ _+O +At 3

(2 )(51)

Using this trapezoidal rule differencing scheme to approximate the time

derivative of the conservative dependent variable q vector, the unknown

conservative variables at the n+l timestep are given by

A n =q n+l +At(qnj+ (t 1(52)2 t )+t 1 (52)

The spatial derivatives of the governing equations are discretized using central

differences, and the right hand side of Equation (52) becomes

Aqn A. t(,, +.,6)n + (,54 + ,56) n+'}2 (53)

The nonlinear terms P and d at the n+1 timestep are linearized as follows

Pn+' = n +._Aqn+l +O(Atl)=Pn + nAqn+l +O(At 2 )oq (54)

where An is the flux Jacobian matrix given in Appendix A. Substitution of the

linearized form of the flux vectors in Equation (54) yields

{h+(6 442k +6;ik)}Aq' = A{34F -8 6n 1
6(55)
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The two-dimensional operator on the left hand side of Equation (55) is

approximately factorized as follows:

{1I 111 A+,1 At } -Aq + At{^F7 "

(56)

On the right hand side of Equation (56) an explicit dissipation term Dexpl, is

added for numerical stability. In order to obtain an oscillation free solution a

second order. dissipation term Dimpl is added to the left hand side spatial

operators. Thus, the complete discretized form of the governing equations

becomes

{lI + + (D ) "}{ (. + ,.+(D,,,p )l }Aq?,' =

{-,,5 4[I$k,- 8~Gk, l- .k D =,} (RHS) (58)

This equation is solved by performing two sweeps as follows:

{[11 +1-( A,. + (Dm.P ) Aq ,.k = (RHS)"2 (59)

f At(Aq. n .I

l ++ )1 (60)

During each sweep the following linear block tridiagonal system of equations is

solved

a, -,.kAq,-, +b,.kA ,k + C,-.,Aq,+,.A = CA (61)
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where Aq = Aq*n+l and f = (RhS)n when the direction sweep is performed,

and qnd f = (RHS)* when the direction sweep is performed.

The block matrices have the form

At - J
ai2k = i.k ipAt +I 

(62)

bi'k = (1+ 2ei P,4t)[II (63)

At -
Ik = 2ALA -Emp~

i~ i- .k (64)
3. Boundary Conditions

All flows were computed at subsonic free stream speeds. For

subsonic inflow and outflow boundaries the flow variables are evaluated using

zero order Riemann invariant extrapolation. At the inflow boundary there is one

incoming and three outgoing characteristics, therefore, three variables, density

(p), normal velocity (wi), and pressure (p) are specified and the fourth variable

axial velocity (ul), is extrapolated from the interior. The inflow boundary

conditions are given by

/a] 0r - ), st p.p a) , ai= (R+ -R-)

I =tPs /

u, (R+ + R-)/2

1 2

(65)
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where R+I, R- 2 are the incoming and outgoing Riemann invariants given by

R = u.. + 2a./(y- 1), R- = u2-2a /(- 1)1 2 (66)

At the outflow boundary there is one incoming and three outgoing

characteristics and only one quantity, pressure, is specified while the others are

extrapolated from the interior. For the density and the normal velocity, simple

first-order extrapolation is used, and the axial outflow velocity is obtained from

the zero order outgoing Riemann invariant. The outflow boundary conditions

are given by

A =p

u= R -2a 1/(y- 1), a =.v -,/ p

W ! =W 2

P = P2
(67)

On the body surface the nonslip condition is applied for the velocities. The

density and pressure are obtained from the interior by extrapolation. For the C-

type grids used in this study averaging of the flow variable at the wake cut is

used.

4. Turbulence Models

a. Baldwin-Lomax Turbulence Model

The Baldwin-Lomax model [Ref. 121 is a two -layer, inner and

outer eddy viscosity model for the computation of two- and three-dimensional

flows. Patterned after the Cebeci-Smith model [Ref. Il], it incorporates a

modification that bypasses the need for finding the edge of the boundary layer.

This is achieved by introducing the vorticity in place of the boundary layer
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thickness. The turbulent effect is simulated by an inner eddy viscosity, given

by:

(A4)inner= Pl2fo Yo y Y.o ... r (68)

where Ycrossover is the smallest value of y at which the values of the inner and

outer eddy viscosities are the same and the Prandtl mixing length 1 is

L = e(69)

The magnitude of the vorticity in two-dimensions Ikol and y+ are defined as

follows

uI 0' + = P.,Ury p_,u__y
Ol= d I and lull P (70)

where A+ is a constant. The subscript w denotes values at the wall or airfoil

surface in this case.

The outer eddy viscosity is given by the following expression

(!A)out = KCcFpF(y )WAKEF (Y)KLE Ycrossovr " Y (71)

where ic and Ccp are constants and F(y)wake=yma. Fmax for boundary layers and

F(y)wake=Cwk Ymax (UDIF 2/Fmax ) for wakes and separated boundary layers.

The quantities ymax and Fmax are determined from the expression

F(y) =y W F1
A1 A (72)
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The exponential term of Equation (72) is set to zero for wakes. Fmax is the

maximum value of F(y) that occurs in a profile and Ymax is the value of y at

which it occurs. F(y)KLEB is the Klebanoff intermittency factor given by

F(Y)KLEB = F1+5. CEBYJ 6
1

I YMA ) 1(73)

The quantity UDIF is the difference between Umax=Uy=ymax and the minimum

total velocity in the profile

UDIF( Y7Y7) +j7) _(4

The second term in UDIF is taken to by zero except in the case of wakes.

The constants were determined to achieve agreement with

Reference 11 and can be found in the original document. This model

completely models turbulent flow over an airfoil, it is relatively easy to code, it

does not degrade the solution convergence, and it is computationally efficient.

b. Johnson-King Turbulence Model

The Johnson-King model [Ref. 13] takes into account the

convective and diffusive effects on the Reynolds shear stress -u'w' in the

streamwise direction. The eddy viscosity is given by

, = vt0 1 ex V47 1( , (75)

where vt, Vto describe the eddy viscosity variation in the inner and outer part of

the boundary layer. The inner eddy viscosity is computed as
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Vtl = D2 KY 4(- 'W) ,where D2 =1 -e-(y/A ) , where the constant A+=15. The

outer viscosity is given by

vto=a(x)[0. 168UtSxy] (76)

where y is the Klebanoff intermittency function y=[1+5.5(y/5) 61- 1 and 0(x) is the

solution of the ordinary differential equation which describes the development of

-U'W'Imax along the path of maximum shear stress. This model accounts for the

effects of convection and diffusion on the Reynolds stress development through

the solution of the following ODE

_a, CdfL.
I (I- L-UMgeqj7 77 ) V1

t-I =C J (77)

here Cdif and al are modeling constants, urn is the maximum average mean

velocity and g=[-u'w'Imax] - 1/2, geq=[-u'w'Imax,eg] - 1/ 2 where Lm is the

dissipation length evaluated as

LM =Q 40y y. / 6< 0.225

L, = Q09y y / 8 > Q 225 (78)
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The equilibrium shear stress geq in Equation (77) is determined from the

following equilibrium eddy viscosity distribution

vt.,N Vt.,/ I- exp te

vt , = D2 cyI(-W W').I

t ,eq D _2 ________

v,0.N =a(x)[Ql68U¢,3*y (79)

An implicit Euler method is used for the numerical solution of Equation (77),

and the maximum shear stress at each iteration level is updated as follows

an+!

vto (80)

Solutions with the Johnson-King turbulence model were obtained as follows.

First a convergent solution using the Baldwin-Lomax turbulence model for the

entire flow field was computed. Then the Johnson-King model was applied only

to the upper part of the airfoil. To initiate the solution a(x) in Equation (76) is

set equal to unity and it is allowed to change according to Equation (80) until

the final solution is obtained.

c. Algebraic RNG-based Turbulence Model

Recently an algebraic eddy viscosity, as well as a two-equation K-

e model based on Renormalization Group (RNG) Theory of turbulence [Ref. 14]

were proposed for the closure of the Reynolds-averaged Navier-Stokes

equations. The algebraic model, although free from uncertainties related to the

experimental determination of empirical modeling constants, still requires

specifications at an integral length-scale of turbulence which reduces the
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generalities of the model. Here the integral scale is assumed proportional to the

distance from the wall and the eddy viscosity for the RNG-based algebraic

turbulence model is obtained as in Martinelli [Ref. 151 from the following

formula

r 13
v=vI l+H i+ -Cc(

v,' y 2256)(81)

where v=vt+Vl, H is the Heavyside step function and 0 is the dissipation

function O=Tij (a ui / axj ). The RNG-based turbulence model is applied only for

the suction surface separated flow region while the pressure side and the wake

regions are computed with the Baldwin-Lomax model.
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IV. RESULTS AND DISCUSSION

A. METHOD OF INVESTIGATION

As stated in the introduction this investigation is divided into three parts;

validation of the Navier-Stokes code (Ns2.f) through comparison with

experimental data and a well tested inviscid unsteady Panel method code as

well as a steady viscous/inviscid code. Finally evaluation of the effects of

reduced frequency, mean angle, amplitude, Mach number, and Reynolds

number on unsteady flow behavior are examined. Also, during the course of

this study it became necessary to investigate the effects of several turbulence

models on the results computed for the harmonically oscillating cases.
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The following table lists the cases studied during the course of this

investigation:

TABLE 2. TEST CASES

Case Type of Motion Parameters

1. Steady State M--0.7, aX=l.4*, Re=9x 106

________ (Tran sonic) __________________

2 Steady State M--0.799, ot=2.26*, Re=9x 106

________ (Transonic) __________________

3 Steady State M=0.3, Re=3x 106

4 Steady State M=0.3, Re=4x10 6

5 Rapidly Pitching Airfoil M=0.3, k=0.01272, Re=2.7x10 6

(Ramp) _________________

6 Harmonically Oscillating (x(t)=Ao*±A I sin(Cot)

(Multiple Parameters) __________________

7 Harmonically Oscillating ax(t)= 13 o±2.5 0sin(wt), k--0.2, Re=4x 106

(Small Amplitude)

8 Harmonically Oscillating ax(t)= 1 Y±2.5*sin(cot), k_-0. I, Re=2x .106

________ (Small Amplitude)______ ____________

9 Harmonically Oscillating ax(t)=90±5sin((ot), k--0.2, Re=4x 106

10 Harmonically Oscillating ax(t)= 10±+5 .5sin(cot), k=-0. 1, Re=4x 106

I11 Harmonically Oscillating cc(t)=1I 1+S5sin(ot), k=0. 1, Re=4x 106
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1. Steady-State

Flow solutions can be obtained either by rotating the grid or by rotating

the flow. Cases 1 and 2 solutions were obtained by rotating the grid.

First the procedure was used for the computation of steady flow over

the NACA 0012 airfoil. Steady-state solutions were obtained for subsonic and

transonic flow regime. Flow solutions for Case 1 and 2 (Table 2) were

computed by rotating the direction of the flow relative to the stationary grid.

However, in Cases 3 and 4 the grid was rotated to the desired angle using a

simple Fortran code called rotgr.f and the free stream flow remained parallel to

the x-axis. The program also translates the grid to a desired pivot point. In this

thesis the pivot point was always chosen to be the quarter chord point. Either

method produced the same solution. The steady-state solutions tested the

accuracy of Ns2.f and provided initial solutions for the unsteady cIses. Ns2.f

was also compared to an existing steady, incompressible, viscous/inviscid

method (Incompbl.f) obtained from Dr. T. Cebeci, California State University at

Long Beach.

a. Case 1. M=0.7, a=1.4*, Re=9xl0 6

The flow conditions for the first test case are Moo=0.7, at an angle

of attack of 1.4 degrees, and a Reynolds number of nine million. Explicit

boundary conditions were used and the Baldwin-Lomax turbulence model was

selected. The solution was obtained on a 161x64 point grid. This case was

chosen because the solution converged rapidly. Figure 3 shows good

agreement between the inviscid (Euler) pressure distribution and the measured

values of Harris [Ref. 161. Next, a Navier-Stokes solution was obtained whose

convergence history is given in Figure 4. The solution was carried out to 2500
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iteration at a timestep of approximately 0.08. The pressure distribution

computed by Ns2.f (Figure 5) is also in good agreement with the measured

values. However, the suction peak is more accurately predicted by the inviscid

solution. For a free stream Mach number (M.,) of 0.7 a maximum Mach

number of 1.1 (Figure 6) is obtained on the upper surface near the leading edge.

The density contour plot, Figure 7, shows the smooth contours indicative of a

fully converged solution. The velocity field, Figure 8, shows the boundary layer

thickness, represented by the thick dark line. The sonic line is represented by

the line extending from 7% chord to 20% chord.
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Figure 6. Mach Contour, M=0.7, a=1.40, Re=3xl0 6
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Figure 7. Density Contour, M=0.7, ax=1.4', Re=9x10 6
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b. Case 2. M=0.7 99, a=2.26", Re=9xl0 6

The next steady-state case investigated was at a Mach number

equal to 0.799, at an angle of attack of 2.26 degrees and a Reynolds number of

nine million. As in Case 1, an Euler solution was first obtained and compared to

measured data as well as to a viscous solution obtained with an upwind scheme

using the Johnson-King turbulence model. As seen in Figure 9, the pressure

distribution for the inviscid solution is in fair agreement with the measured data

until the shock is reached at the 50% chord point. After this point the computed

solution fails to predict the pressure jump due to the presence of a shock at

mid-chord. Note that the upwind scheme in combination with the Johnson-King

turbulence model accurately predicts the location of the shock, even though the

magnitude of the pressure gradient is off slightly. Next, a viscous solution was

computed by Ns2.f with the Baldwin-Lomax turbulence model. Fourth order

dissipation was added to produce a smooth flow solution across the weak shock

located at mid chord. The solution was continued for 6000 iterations. The

spike in the convergence history (Figure 10) was due to the addition of more

fourth order dissipation. It is seen that the shock location was not predicted.

At this angle of attack and Mach number the flow starts to separate and the

Baldwin-Lomax turbulence model fails to model this separated flow region.

Figure 11 shows the viscous pressure distribution comparison. The sonic line is

shown on the Mach contour plot of Figure 12. A maximum Mach Number of

1.45 is reached in this supersonic flow region. Note the steep Mach gradient

(Figure 12) at approximately 60% chord. Figures 13 and 14 show the pressure

contour and density contour, respectively. Again the steep density gradient

indicates the shock location at approximately 60% chord vice the measured
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location at 50% chord. Finally, the velocity field and sonic line are shown in

Figure 15.
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c. Case 3. M=0.3, Re=3xl 6

In order to produce C1 vs o and Cm vs a curves, solutions were

computed for a=2*, a=4°, a=60, a=8 °, a=90, a=10, o=12 °, x-13*, a=13.5 °,

(x=14, and a=15". However, only results for a=4, a=11, and x=14, are

presented.

Figure 16 shows the convergence history of Ns2.f for a 161x64

algebraic C-type grid. The Courant-Friedrichs-Levy (CFL) condition was

approximately 2000-2500 which corresponded to a timestep between 0.005 and

0.01. A comparison of the ,omputed pressure distributions at cc=4 ° (Figure 17)

shows good agreement between the Navier-Stokes calculations using the

Baldwin-Lomax turbulence model and the viscous/inviscid code predictions.

The measured suction peak is somewhat higher than predicted by the codes.

Figures 18 and 19 show fair skin friction agreement. Note that the Navier-

Stokes code assumes turbulent flow over the entire airfoil, while the

viscous/inviscid interaction code uses Michel's method to predict the

laminar/turbulent transition. As seen in Figure 18, the transition point for the

upper surface is at 10% chord. A Mach contour plot is shown in Figure 20 and

a density contour plot with the normalized stagnation pressure (0.98) contour

overlayed in Figure 21. A maximum Mach number of 0.48 was attained. The

density contours are smooth with steep gradients at Je leading edge.

In Figures 22 through 29 similar results are presented for angles of

attack of 11 and 14 degrees. It is seen that the agreement between the two

codes and the measured pressure distributions is quite satisfactory, although the

suction peak tends to be underpredicted by both codes.
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Figures 30 and 31 show the C1 vs cx and Cm vs cc CUTVeS.

respectively. Stall is seen to occur at approximately a=13.5 °. The Navier-

Stokes code reproduces the experimental lift and moment values up to the

maximum lift value quite well, whereas the viscous/inviscid code shows greater

deviation for angles of attack exceeding about eight degrees.
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d. Case 4. M=0.3, Re=4x106

Figure 32 shows a comparison of the computed lift curve with the

experimental data at a Reynolds number of four million. It can be seen that the

computed maximum lift angle and hence the static stall angle is 13.5* degrees.

This agrees quite well with the experimentally measured stall angle of

McCroskey et al [Ref. 17]. The computed lift and pitching moment are in fair

agreement for small angles of attack, but start to deviate at larger aigles.
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2. Rapidly Pitching Airfoil

Next, AGARD Case 6 from Landon [Ref. 18] was investigated using

Ns2.f and U2diif.f. The computed results are compared to the measured data.

The flow condition for this case corresponds to a freestream Mach number

equal to 0.3 at a non-dimensional pitch rate equal to 0.01272 and a Reynolds

number of 2.7 million. Flow solutions for a rapidly pitching airfoil were

computed by pitching the airfoil about the quarter chord at a constant rate from

zero degrees angle of attack to a final angle of attack of 15.540. Figure 33

shows a sketch of the motion produced by a rapidly pitching airfoil.

S 15.540 ..............................-

0

0 0----

-3500 0 4000

Iterations

Figure 33. Rapidly Pitching Airfoil Motion

First a steady-state solution at zero degrees angle of attack was well

converged to 3800 iterations. Then the iteration counter was reset to zero and

the airfoil was rapidly pitched up to the final angle. The reduced frequency k is

given by k=a c/ 2 U., where a is the pitch rate. In terms of non-dimensional

quantities a(t)2Mk and a(t)= ao+aI(t/ T), where ot) (Ao), is the initial angle
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of attack a=0°, cq1 (AI), is the final angle of attack (x=15.54, and T is the time

required for the airfoil to complete the pitching motion.

a. Case 5. M=0.3, k=0.01272, Re=2.7xO 6

Figure 34 shows the comparison of the computed pressure

distribution for the ramp-type unsteady motion at ct=4.84 °, for an inviscid Euler

calculation. This Euler solution uses a 121x35 C-grid for the computation.

Similar results were produced for ensuing angles of attack. Figures 35 through

39 show pressure distributions at ot=4.84 °, ox=6.720, (x=10.80, ot=12.83 °, and

a=15.54 °. Surprisingly, the inviscid code predicted the suction peak more

accurately than the N-S code for all angles of attack. Several explanations are

offered to account for this unexpected result. First the 161x65 C-grid may not

be fine enough to predict the magnitude of the suction peak and the N-S code

may have too much numerical viscosity, thus in effect performing calculation at

a lower Reynolds number. The flow at the leading edge may in fact be laminar.

while the computed solution assumed turbulent flow everywhere. Figure 40

shows the Mach contour and Figure 41 shows the density contour at cx=10.8'.
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A detail of the flow field generated by Ns2.f at ot=12.83' is shown

in Figure 42. The flow appears to be smooth and attached (the dark line shows

the boundary layer edge). However, magnification, as shown in Figure 43,

reveals the start of a slight reverse flow region at approximately 10% chord. At

ot=15.54, Figure 44, the boundary layer is much thicker with reverse flow

profiles from approximately 10% chord to the trailing edge.

Figures 45 and 46 present the computed Ci vs ct and Cm vs (x

curves, respectively. The Navier-Stokes code underpredicts lift and pitching

moment coefficients whereas the inviscid panel method gives significantly

better lift predictions. However, it fails to predict the pitching moment

coefficient for angles greater than 10. A more comprehensive investigation of

the dynamics of a rapidly pitching airfoil can be found in Grohsmeyer [Ref. 191.

84



I 4 ' 
P ~ .Ij ! I S

If 
4 4 i

44 ~ 
l 1 ' i

, = 4 , ,,,,f I/
I 4 ''~ t~ d j 

,

I U I 4 / 
d

£ l 
' I 

I

I l 
I 

4 j I tj II 
*

I 
4 4 4 ' 61 44 

Ad~ I I

j 1 
4 4 J j 

* 

! 

'l

1

i 
4 I 

iI  

1 I 1

U j I t II I i ~ej 
1 I

/ I 
1 1 1 d dj4

j ii I I I hI Id1 
' 

Ijll' I 1 I I

'ii

F i e ' ''''i" ' ! 4 I 
J; ~ > t

I 

I

I
I

i 1 I I 

j = I

! 

I 
I

Fig re 2. Velocity Field, Ramp Motion, M= O.3, a-2.83 °,

k=0.01272, Re=2.7xl0
6

85



v z X

Figure 43. Velocity Field (Magnified), Ramp Motion, M=0.3,
az=12.83%, k=0.01272, Re=2.7x10 6

86



ii

- 6 *44J z ~/ At1419~ flh6  d

/1 1 4 'A1

r t i / I . i44  d

14 4 '' 4 11 4 6

i 4 I j A ' . ,Al~ I i A

N 14/414!
* 4 4 4 W4,4 i 1

Ox 4 'T 0 i

m 4d i4id

lo it 0

i 4 6 Fed Ram MtnM , a 1
1II 4 * 4 t I

' i 4 4 4 *4 j ~ ~i ' a

3 4 4 I i ij '' A

k=.122 ,,=2./,,

6 4 4 4 4 ! ! i 1 1  4 ' i J J 8a 4 jii' iI/"I ' I/ lIPI 4
AEA ii I I I

I i ( II ~iAj i4 i , J

4 4 lt~ 11 11 1

I I I o 1

~ I

6 6 I \ t A I A

"Al' t ! A '

A I

A AI A_ -

Figure 44. Velocity Field, Ramp Motion, M=0.3, t=jS.54 °

k=0.01272, Re=2.7xl0 6

87



C)

CCI

OO

r4.

(NJ

II ".

E E5

2'5'

5

C" W-1FC o1

N .!,8

1I I

Figure 45. Ci vs at, Ramp Motion, M=0.3, k=0.01272, Re=2.7xl0 6

88



\*4

*0

C lz Z

'EI

Figre 6. m v a ampMotonM=03, =0.127, R=2.xli

89-



3. Harmonic Airfoil Oscillation Using the Baldwin-Lomax

Turbulence Model

Next, the code was applied to sinusoidal airfoil oscillations about the

quarter chord point. These time periodic solutions were obtained for the second

cycle because the results obtained for the third cycle were indistinguishable

from ones of the second cycle. Figure 47 shows the computed angle of attack

history.

- A

AO
00

-A
Steady State First Cycle Second Cycle

0 10000 20000

Figure 47. Harmonically Oscillating Airfoil

Here, A0 is the mean angle of attack, and Al is the amplitude. For

each oscillatory case a steady-state solution was obtained for the minimum

angle of attack during the cycle. The iteration counter was set to zero as the

sinusoidal motion was time shifted half a cycle so that the start of the motion

begins at the minimum angle of attack. This ensures a smooth transition for the

converged steady state solution to the start of the oscillatory motion. Ten
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thousand (10,000) iterations were computed per cycle, with a timestep equal to

approximately 0.05 to 0.01.

a. Case 6. a(t)=Ao*±A*sin(ot)

All the computations presented in this section are computed with

Ns2.f using the Baldwin-Lomax turbulence model. Figures 48 and 49 show the

effect of Mach number on the lift and moment hysteresis loops for small

amplitude oscillations about a mean angle of 12 degrees with an amplitude of

3.0 degrees, at a Reynolds number of four million and at a reduced frequency

of 0.1. Note that the hysteresis loops for M.=0.4 oscillate wildly and third

cycle computations do not coincide with results from previous cycles. For the

Moo=0.3 computation the moment hysteresis loop indicates a stable condition.

The effect of amplitude is shown in Figures 50 and 51. Figures 52 and 53 also

show the effect of amplitude for a larger mean angle of attack, AO=14.00, at the

same Mach number, reduced frequency, and Reynolds number, as before. Both

solutions oscillate in a manner that is not repeatable if the motion is allowed to

continue for additional cycles. For this comparison the maximum angle of

attack attained during a cycle exceeded 16.5. A comparison of the first and

second cycle lift and moment coefficient loops is shown in Figures 54 and 55.

Note that the second cycle lift curve starts at a slightly greater lift coefficient

than in the first cycle. Aside from this anomaly, the loops are in good

agreement but exhibit no instability.

Figure 56 shows the computed lift and moment loops for small

amplitude oscillations about a mean angle of 13 degrees with an amplitude of

2.5 degrees, at a Reynolds number of two million, for three values of reduced
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frequency. It can be seen that all the moment loops computed in this section

using the Baldwin-Lomax turbulence model indicate torsional stability.
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b. Case 7. a(t)=13*_2.5*sin(ot), k=0.2, Re=4xl0 6

In an effort to determine if the flow field was in fact predicting a

trailing edge vortex that would shed during the oscillation cycle as seen in the

experimental results, instantaneous particle traces and the corresponding

velocity fields were plotted for the downstroke at a Mach number of 0.3, a

mean angle of attack of 13 degrees, an amplitude of 2.5 degrees, a reduced

frequency of 0.1 and a Reynolds number of four million. Figures 57 through 61

show the downstroke portion of the cycle beginning at cc=15.3" and ending at

a=14.5. A recirculatory region is seen in Figure 57 which grows slightly, as

seen in Figure 58. This region then appears to diminish in size and intensity.
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c. Case 8. a(t)=13°±2.sin(ot), k=O.1, Re=2x0 6

The plots generated for Case 7 did show a recirculatory region,

but a full understanding of its development and structure could not be gained

from only a portion of the oscillatory cycle. Therefore in Figures 62 through 80

a complete cycle is shown for the same flow condition as in Case 7 with only

the reduced frequency being increased from 0.1 to 0.2 and Reynolds Number

decreased from four million to two million. A recirculatory region is seen to

form at ot=14.9 ° on the upstroke, which continues to grow and intensify. This

recirculatory region reaches its largest value at c=15.3* on the downstroke and

then diminishes and finally the flow becomes completely reattached. It is

important to note that even for this relatively fast oscillation the recirculatory

region did not shed into the wake.
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4. Effect of Turbulence Modeling

a. Case 9. a(t)=9*±5*sin(ot), k=0.2, Re=4x0 6

Figures 81 and 82 show a comparison of the lift and moment

hysteresis loops using the Baldwin-Lomax turbulence model for an oscillation of

5 degrees amplitude about a mean angle of attack of 9.0 degrees with

McCroskey's experimental data for a Mach number of 0.3, a Reynolds number

of four million, and a reduced frequency k=0.2. It is seen that there is a

substantial difference between the computed and the experimental lift

hysteresis loops. This difference becomes even more pronounced when the

computed and experimental moment hysteresis loops are compared with each

other. In an effort to understand the failure of Ns2.f to predict the experimental

pitching moment hysteresis loop, the pressure distributions for several upstroke

and downstroke angles of attack were compared to measured data from

Reference 1. Figures 83 through 87 show pressure distributions for a=] 1.90 on

the upstroke portion of the cycle; and (x=13.7', ox=13.0', ot=10.5 °, and oX=8.9 0 on

the down stroke cycle. U2diif.f overpredicts the suction peak at a=1 1.90 on the

upstroke and Ns2.f underpredicts the peak. Even though the values are off, the

general shape of the distribution is well predicted. However, on the downstroke

at a=13.7", a significant difference between the computed and the measured

distributions is observed. The measured pressure distribution shows a lower

suction near the leading edge but higher suction near the trailing edge. Neither

of these changes are predicted by Ns2.f. As the oscillation continues on the

downstroke the measured distribution tends to flatten out creating a "plateau".

Just after a=8.9* on the downstroke, the flow begins to reattach and the positive

pressure difference at the trailing edge becomes smaller. The failure of Ns2.f to
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predict the experimental loop results from the inability of Ns2.f to accurately

compute the pressure distributions. Since the pitching moment is an integrated

quantity, the size of the area under the pressure distribution aft of the quarter

chord must be greater than the area forward of the quarter chord to compute a

negative or downward pitching moment. Ns2.f clearly does not predict the

experimental pressure distributions during the downstroke.
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b. Case 10. a(t)=l0+5.5sin(wt), k=0.1, Re=4xl0 6

The measured loop coisists of two subloops, a clockwise

"unstable" subloop and a counterclockwise "stable" subloop. It is seen that the

Navier-Stokes calculations in combination with the Baldwin-Lomax turbulence

model fails to predict the destabilizing clockwise pitching moment loop. For this

reason the sensitivity of the computed loops to different turbulence models was

studied next. Figures 88 and 89 show the computed lift and pitching moment

loops for oscillation about a slightly higher mean angle of 10 degrees at an

amplitude of 5.5 degrees. The Mach and Reynolds numbers are again 0.3 and

four million, and k was decreased to 0.1 to minimize the effects of reduced

frequency. It can be seen that the Baldwin-Lomax, Johnson-King, and the

RNG turbulence models produce significantly different hysteresis loops. The

RNG model produces relatively good agreement with the measured lift

hysteresis loop but fails again to predict the destabilizing moment subloop.
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c. Case 11. a(t)=11*+5*sin(ot), k=O.1, Re=4xl0 6

A solution was also computed for oscillations about a mean angle

of 11 degrees at an amplitude of 5 degrees, the other parameters left

unchanged. Figures 90 and 91 show the computed lift and moment hysteresis

loops. As before, the calculations fail to predict the expected destabilizing

moment subloop. The reason for this failure can be better appreciated by

visualizing the separated flow structures computed with these turbulence

models. Figures 92 and 93 show the computed flowfield with particle traces

and the velocity field. Figure 92 corresponds to the instant when the airfoil

oscillates through an incidence of 15 degrees during the downstroke. Different

turbulence models produce substantially different recirculatory flow patterns on

the upper surface near the trailing edge. The Baldwin-Lomax model produced

the smallest recirculatory region while the RNG model produced the largest. In

addition, Figure 93 (a=15*) shows the relative magnitudes of the velocity

vectors. Note, near the surface at the trailing edge, the magnitude of the

velocity vectors in the reverse flow region calculated by the Baldwin-Lomax

model are much smaller than the region calculated by the Johnson-King model

or RNG model. As the cycle continues, Figures 94 and 95 (cx=14*) show the

recirculation region to shrink slightly and loose intensity for the Baldwin-Lomax

model, while the regions as calculated by the Johnson-King and RNG continue

to expand and intensify. As noted in Case 8 the recirculatory flow region

grows and then vanishes again during the course of the oscillation. Even

though the structure at the trailing edge resembles a vortex it does not shed

from the trailing edge. The occurrence of the destabilizing moment loop

appears to be closely associated with the vortex shedding from the trailing
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edge, an event which occurs soon after the static angle is substantially

exceeded during part of the cycle. Although the static stall angle is significantly

exceeded in the present calculations the numerical procedure along with the

turbulence modeling used in the calculations appears to be unable to produce

the anticipated shedding process.
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EFFECT OF TURBULENCE MODELING ON THE COMPUTED
TRAILING EDGE FLOWFIELD

M,, 0.3, a (t) =110 + 50 sin (At), k =0.1, Re =4 x 106

ai = IS- DOWNSTROKE

(a) Baldwin-Lomax

(b) Johnson-King

(c) RNG

Figure 93. Velocity Field, Oscillatory Motion, M=0.3, a=15'
(Downstroke), cz(t)=1 10 +50sin(wot), k=0.10, Re=4xl0 6
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EFFECT OF TURBULENCE MODELING ON THE COMPUTED
TRAILING EDGE FLOWFIELD

M 0.3, a(t) 11' + 5' sin (Mt), k = 0.1, Re =4 x 106

W4 DOWNSTROKE

(a) Baldwin-Lomax

(b) Johnson-King

(c) RNG

Figure 94. Instantaneous Particle Trace, Oscillatory Motion, M=0.3,
a=14' (Downstroke), a(t)=1 10±S'sin(owt), k=0.10, Re=4x10 6
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EFFECT OF TURBULENCE MODELING ON THE COMPUTED
TRAILING EDGE FLOWFIELD

M 0.3, a(t) =11, + 5o sin (ot), k = 0.1, Re =4 x 106

a =4 WDOWNSTROKE

(a) Baldwin-Lomax

(b) Johnson-King

(c) RNG

Figure 95. Velocity Field, Oscillatory Motion, M=0.3, cz=14*
(Downstroke), a(t)=11 0+S 0sin(wt), k=0.10, Re=4x10 6
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V. CONCLUSIONS AND RECOMMENDATIONS

In the preceding investigation a computationally efficient, fully factorized,

two-dimensional Navier-Stokes flow solver was utilized to predict steady and

unsteady flow solutions about a NACA 0012 airfoil. Comparisons between a

steady viscous/inviscid interaction method code using the Cebeci-Smith

turbulence model and the Navier-Stokes code using the Baldwin-Lomax

turbulence model show close agreement up to just prior to the static stall angle

of attack. After this point, the viscous/inviscid interaction method code fails to

accurately model the flow separation.

When applied to the unsteady problem of airfoil stall flutter in compressible

flow, the Navier-Stokes code shows that the modeling of the recirculatory flow

region with current turbulence models fails to capture the essential physics

which governs the onset of stall flutter. Comparisons of the computed results

with available experimental data indicates that even though the lift response is

fairly well predicted, the computation of the pitching moment hysteresis loops is

very sensitive to turbulence modeling. Results computed with several current

models are in good agreement whenever the steady stall angle is exceeded only

slightly. However, they fail to capture a vortex shedding process that may

contribute to the onset of stall flutter.

Therefore, further detailed studies of improved numerical schemes and

turbulence models as well as viscous/inviscid interaction approaches are

required to improve the prediction of the unsteady flow separation and vortex

shedding phenomenon. Further computational work with the full Navier-Stokes

equations instead of applying the thin-layer approximation is recommended. In
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addition, local grid refinement studies that focus on the the leading and trailing

edge upper surface may lead to the accurate prediction of the extremely

complex vortex development and shedding process.
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APPENDIX A - FLUX JACOBIAN MATRIX

The Jacobian matrices Ad / oq and B63o / 6 are given by Aor B =

kol + k IA + k2B, where A = 3E/aq and B =F/aq are the usual Jacobian

matrices of the Cartesian flux vectors. The A or B matrix is

F ko k k 2  0

-u(k u +k2v) -(y-2)k u -(y-1)kv

+ kio 2  + ko+ k1u+ k2v + k 2u

= - _v(ku +k 2v) kiv _(y_2)k2v++ k 20 2  --(y-1)k 2u ko +klu +k2v

(klu+k2V)* [t(e/P)-2Ik, - [y(e/p)-2k 2j- y(klu+k 2v)

[I-y(e/p)+2019 (y 1)(klu+k 2v)u (y-1)(klu+k 2v)v + ko

where 02 = 0.5(y- 1)(u 2 + v2), ko= t, kl=ix, k2= z for A, and ko= t, kl= x,

k2=z for B.
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APPENDIX B - PITCHING MOMENT DERIVATION

Figure 96 shows the nomenclature for the integration of the pressure and

shear stress distributions over a two dimensional body surface as generated by

the Navier-Stokes code Ns2.f. For unsteady motion the airfoil is rotated with

respect to a fixed inertial frame of reference (x,z: Laboratory frame of

Reference). Note, for unsteady motion, as the airfoil rotates through an angle of

attack, all grid (i=l...lmax, k=1...Kmax) are rotated about the desired pivot point

with respect to the fixed x,z coordinate system. As the solution is advanced in

time the flow quantities for this new grid location are updated for each point.

10

T.E. upper, i=131

Az=z(i+l) -z(i) L.1 T.E. lower, i=3 1

NAx=x(i+l) - x(i)

x - coordinate

Figure 96. Pitching Moment Derivation
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PITCHING MOMENT DERIVATION GENERATED BY MATHCAD

1. Read tabulated data generated from Ns2.f. Data computed at a--0" and a Re=4xl0**6.

Data READPRN(up) Data READPRN(low) i := 1 ..50
U 1

<0> <0>
x Data x Data

U u 1 1
<1> <1>

z Data z Data
U u 1 1

<2> <2>
cp Data cp Data

U u 1 1
<3> <3>

T Data I Data
U u 1 1

2. Compute Ax and Az for upper and lower surface.

Ax x - x Ax.1 x.1 - x.1
U U U

Az :=z - z Az.1 :=z.1 - z.1
U U U

3. Compute segment length As for upper and lower surface.

2 2 12 21

As JL 1A. i + [AZ ]u i AS.1 ][[Ax.1 ] 2+ [Az.1]J2

4. Compute angle, 0, relative to perpendicular for upper and lower surface.

Az Az

8 0" + atan - 8 0" + atan

L u L 11
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5. Computed the x and z moment arms for the upper and lower surface.

x + x z + z
U U U U

i i-1 i i-I
xx z z

u 2 u 2

i i

x + x z + z
1 1 1 1

i i-i i i-I
xx z z

1 2 12i i

6. Computepitching moment coefficient about quarter chord by applying equation 1.11 from [Ref.
6, p. 17].

[ ,/ i cos[8 ] + i sin[u ]xx . As

CM 2 + [c .sin0[O ] + r U .cos[18 ]z ]. U

+ L~ i L iJ i iL iJ] . .. -As
-+ '[cp "si[81 ] + -r -cos 8 1  i 'As

L L [c i Lsn8 i I+- i -Cs1L il Z

Cm = 0.005
25

7. The computed pitching moment coefficient from Ns2d.f (Computed on a Cray Super-Computer)
was Cm--0.0006, as compared to the calculations made on a Macintosh SE/30 where Cm=0.005.
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Upper Surface Data:
x z -Cp Tau
-2.5e-1 -1.6e-3 -1.0319e+O 3e-3
-2.497e-1 3e-3 -9.841e-1 -7.4e-3
-2.479e-1 7.6e-3 -6.798e-i -1.5e-2
-2.447e-1 1.2e-2 -4.091e-i -1..64e-2
-2.404e-1 1.65e-2 -1.766e-1 -1.54e-2
-2.346e-1 2.09e-2 9.93e-2 -1.19e-2
-2.273e-1 2.49e-2 2.286e-1 -8.4e-3
-2.187e-1 2.88e-2 2.769e-1 -6.3e-3
-2.088e-1 3.26e-2 3.316e-1 -4.9e-3
-1.975e-1 3.61e-2 3.715e-1 -3.8e-3
-1.85e-1 3.94e-2 3.951e-1 -3e-3
-1.713e-1 4.26e-2 4.105e-1 -2.4e-3
-1.564e-1 4.55e-2 4.199e-1 -1.9e-3
-1.403e-1 4.81e-2 4.245e-1 -1.5e-3
-1.23e-1 5.05e-2 4.248e-1 -1.2e-3
-1.047e-I 5.26e-2 4.221e-1 -le-3
-8.54e-2 5.44e-2 4.168e-1 -7e-4
-6.51e-2 5.6e-2 4.094e-1 -6e-4
-4.38e-2 5.73e-2 3.996e-1 -4e-4
-2.17e-2 5.82e-2 3.904e-1 -3e-4
1.3e-3 5.89e-2 3.778e-1 -2e-4
2.5e-2 5.93e-2 3.628e-1 -le-4
4.95e-2 5.94e-2 3.494e-1 Oe+O
7.45e-2 5.92e-2 3.343e-1 le-4
1.002e-1 5.88e-2 3.184e-1 le-4
1.264e-1 5.81e-2 3.031e-1 2e-4
1.53e-1 5.72e-2 2.875e-1 2e-4
1.8e-I 5.6e-2 2.71e-1 2e-4
2.073e-1 5.46e-2 2.544e-1 3e-4
2.348e-1 5.3e-2 2.378e-i 3e-4
2.626e-1 5.13e-2 2.211e-1 3e-4
2.904e-1 4.93e-2 2.045e-1 3e-4
3.182e-I 4.72e-2 1.884e-1 3e-4
3.461e-1 4.5e-2 1.716e-1 4e-4
3.738e-1 4.27e-2 1.559e-1 4e-4
4.014e-1 4.02e-2 1.421e-1 4e-4
4.287e-1 3.77e-2 1.252e-1 4e-4
4.557e-1 3.5e-2 1.067e-1 4e-4
4.823e-1 3.23e-2 9.05e-2 4e-4
5.085e-1 2.96e-2 7.46e-2 4e-4
5.342e-1 2.68e-2 5.68e-2 4e-4
5.593e-1 2.4e-2 3.86e-2 4e-4
.5.838e-1 2.12e-2 2.06e-2 4e-4
6.076e-I 1.84e-2 1.3e-3 3e-4
6.306e-1 1.56e-2 -2.05e-2 3e-4
6.528e-1 1.29e-2 -4.42e-2 3e-4
6.742e-1 1.0le-2 -7.02e-2 3e-4
6.946e-1 7 .4e-3 -9.2e-2 2e-4
7.141e-1 4.7e-3 -1.441e-1 le-4
7.325e-1 2.2e-3 -1.088e-1 Oe+O
7.499e-1 Oe+O -2.34e-1 Oe+O
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Lower Surface Data:
x z -Cp Tau
-2.5e-1 -1.6e-3 -1.0319e+O 3e-3
-2.486e-1 -6.2e-3 -7.832e-1 4.9e-3
-2.458e-1 -1.06e-2 -4.815e-1 2.3e-3
-2.419e-1 -1.51e-2 -2.554e-1 -2e-4
-2.366e-1 -1.96e-2 2.4e-2 -2.2e-3
-2.298e-1 -2.37e-2 2.063e-1 -2.8e-3
-2.215e-1 -2.76e-2 2.624e-1 -2.7e-3
-2.12e-1 -3.14e-2 3.142e-1 -2.5e-3
-2.012e-1 -3.5e-2 3.619e-1 -2.2e-3
-1.891e-1 -3.84e-2 3.892e-1 -1.9e-3
-1.758e-1 -4.16e-2 4.067e-1 -1.7e-3
-1.613e-1 -4.45e-2 4.178e-1 -1.4e-3
-1.456e-1 -4.73e-2 4.239e-1 -1.2e-3
-1.288e-1 -4.97e-2 4.256e-1 -le-3
-1.109e-1 -5.19e-2 4.237e-1 -8e-4
-9.19e-2 -5.39e-2 4.191e-1 -7e-4
-7.2e-2 -5.55e-2 4.126e-1 -5e-4
-5.lle-2 -5.69e-2 4.035e-1 -4e-4
-2.94e-2 -5.79e-2 3.932e-1 -3e-4
-6.8e-3 -5.87e-2 3.84e-1 -2e-4
1.66e-2 -5.92e-2 3.681e-1 -le-4
4.06e-2 -5.94e-2 3.527e-1 Oe+O
6.53e-2 -5.93e-2 3.419e-1 le-4
9.06e-2 -5.9e-2 3.249e-1 le-4
1.164e-1 -5.84e-2 3.084e-1 2e-4
1.427e-1 -5.76e-2 2.941e-1 2e-4
1.694e-I -5.65e-2 2.777e-1 3e-4
1.963e-1 -5.52e-2 2.612e-I 3e-4
2.236e-1 -5.37e-2 2.448e-I 3e-4
2.51e-1 -5.2e-2 2.283e-1 4e-4
2.785e-1 -5.02e-2 2.l18e-1 4e-4
3.061e-1 -4.82e-2 1.957e-1 4e-4
3.336e-1 -4.6e-2 1.794e-I 4e-4
3.6le-1 -4.38e-2 1.631e-1 4e-4
3.883e-1 -4.14e-2 1.49e-1 4e-4
4.154e-1 -3.89e-2 1.342e-1 4e-4
4.421e-1 -3.64e-2 1.16e-1 4e-4
4.685e-1 -3.37e-2 9.88e-2 5e-4
4.945e-1 -3.lle-2 8.37e-2 5e-4
5.199e-1 -2.84e-2 6.73e-2 5e-4
5.448e-1 -2.57e-2 4.95e-2 5e-4
5.69e-1 -2.29e-2 3.18e-2 4e-4
5.926e-1 -2.02e-2 1.43e-2 4e-4
6.155e-1 -1.75e-2 -5.3e-3 4e-4
6.375e-I -1.48e-2 -2.69e-2 4e-4
6.587e-I -1.21e-2 -5.06e-2 4e-4
6.789e-1 -9.5e-3 -7.47e-2 4e-4
6.982e-1 -6.9e-3 -9.64e-2 3e-4
7.165e-1 -4.4e-3 -1.491e-1 2e-4
7.338e-1 -2.le-3 -1.lOle-1 le-4
7.499e-1 Oe+O -2.34e-1 Oe O
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APPENDIX C - USING THE PROGRAMS

A. DIRECTIONS FOR THE EXECUTION OF NS2.F

1. Steady State Case
In order to generate a Cp, C1, or Cm plot from Ns2.f there are many steps, using

six different programs that must be taken: (1.) grape (grid generation program), (2.) rotgr
(grid rotation program), (3.) Ns2.f (Navier-Stokes code), (4.)vi (editor), (5.) plot3d
(flow visualization program), and (6.)xyplot (a simple x-y plot program).

A.) Ns2.f is a fortran code and will take hours to run even on the Stardent mini-
super computer. To run this code, an executable file (ns2), an input file ns2.in (actual
name of input file is users choice) and a grid file FOR01 .DAT (Stardent) or fort. 11 (on
other computers) must be in the directory.

B.) To obtain a grid, a grid generation program such as grape must first be
used. Grape output places the leading edge of the grid at the reference axis at 0.0 AOA.
Now, the grid must be rotated to the desired AOA by using the program rotgr. The input
file (output from grape) for rotgr must be FOROO1.DAT and the output is FOR002.DAT.
The output from rotgr (FOR002.DAT) must be renamed to FORO I1.DAT for use in ns2.

C.) Next edit the input file to reflect the desired flow conditions. Any editor will
do, however vi is perhaps the most common editor and it is found on most unix based
machines. Enter Mach No. and AOA, check smoothing factors, set time step, Courant No.
and initial no. of iterations (small value- for first run). Check restart false for first run and
make sure No. point of your grid match input values.

D.) The code is executed as follows: ns2 <ns2.in> ns2.out
The first ten iterations should take 1-10 minutes, depending on the type of

computer used. Several output files will be generated:

TABLE 3. NS2.F OUPUT
OUTPUT COMMENTS
ns2.out: convergence data
FOR004.DAT: CI data
FOR007.DAT: residuals
FOR008.DAT: CI, Cd, Cm data
FOR009.DAT: Cp data (to be used with xyplot)
FOR031.DAT: Flow data (to be used with plot3d)

E.) Re-run the code for a greater number of iterations to achieve a
converged solution. When the change in the max residual (FOR007.DAT) has dropped
10-2, the solution has converged. Ensure restart is set to true. The CFL can also be
adjusted to obtain a converged solution more rapidly.
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a. Sample Input to Ns2.f
MACH, ALFAO, ALFA1, ALFARE, REDFRE, REYNOLDS
0.300, 0.00, 0.0, 0.00, 0.00, 2.70
ED2X, ED2Y, ED4X, ED4Y, ED
0.00, 0.00, 0.030, 0.030, 2.0

DT, COUR, NITER, NEWTIT
0.0020, 2100, 50, 2
RSTRT, OSCIL, RAMP, NPER, TSHIFT
true, false, false, 10000, -0.5

TIMEAC, IMPLBC, EXPLBC, CIRCOR
1, false, true, false

VISC, BLTM, JKTM, RNGTM
true, true, false, false
ITEL, ITEU

31, 131
IAI, IA2, IA3, IA4, IA5, IA6, IA7, IA8, IA9, IA10

1250,1350,1450,1550,1570,1590,1610,1630,1630, 1805
false
UNSTST (If true Time = 0.,Set TRUE only when unsteady motion starts from steady
steady state, TRUE for steady-state ok, but for unsteady restarts must be FALSE
for proper recording of unsteady motion)

Mach Free stream Mach number
Alfa : Angle of attack, also mean angle of attack for unsteady
Alfal Amplitude of Oscillatory motion
Alfare Reference angle
Redfre Reduced frequency k = omega * c / 2U
Reynolds Reynolds number Re = cU/n

ED2x X-direction 2nd order explicit smcothing ( e2x = 0.00 subsonic,
0.25 < e2x < 0.50 transonic)

ED2z Z-direction 2nd order explicit smoothing ( e2z = 0.00 subsonic,
0.10 < e2z < 0.20 transonic)

ED4x X-direction 4nd order explicit smoothing ( e4x = 0.03 subsonic,
e4x = 0.05 transonic)

ED4z Z-direction 4nd order explicit smoothing ( e4z = 0.03 subsonic,
e4z = 0.05 transonic)

ED Scaling of implicit smoothing
ISPEC Spectral radious parameter

Dt Time step
Cour Courant number Cu = dt * L max
Niter Number of Iteration in this run
Newtit Newton subiteration within each timestep

RSTRT Restart
OSCIL Oscillatory motion A(t) = AO + Al * sin ( k * M t
RAMP Ramp motion
NPER Number of time steps in one period of oscillation, dt=TiNrer
TSHIFT Time shift in radians to start oscilation for any a(t)

TIMEAC Time accurate Tacc=l and for Jacobian Scaled Dt, Tacc=0
iMLb : Implicit wall BC Treatment
EXPLBC Explicit wall BC Treatment
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VISC Only laminar viscosity
TURBL Baldwin-Lomax eddy viscosity
JKTM Johnson-King eddy viscosity
RNGTM RNG eddy viscosity

ITEL, ITEU Lower and Upper trailing edge I locations
IAI etc. Write out (IAn/100) angles of attack in units

61 - 70

Read grid from unit fort.ll and the flow from unit fort.31

160



b. Sample Output from Ns2.f
Grid dimensions : 161x64
Mach = 0.30000
Ao = 0.00000 Al = 0.00000 k = 0.01272
Re = 0.2700E+07 Dt = 0.00200 Cu=2100.00000

Dimpl = 2.00000
D2x = 0.00000 D2z = 0.00000
D4x = 0.03000 D4z = 0.03000

Restart T
Oscil = F
Ramp F

Itel = 31 Iteu = 131 Ile = 81

Timeac = T
BC impl = F
BC expl = T

Cour = 2100.
L max = 232096.4825513
Dt = 0.00904796

It drmax dumax dvmax demax ir kr
3000 0.573103E-07 0.371716E-07 0.563395E-07 0.129865E-06 140 63

Ni= 1 0.903247E-08 0.711341E-08 0.803250E-08 0.219128E-07

Alfa(t) = 0.000 Cl = 0.007196 Cd = 0.003260 Cm = -0.000692
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2. Unsteady Case
The execution of an unsteady case is essentially the same as for the

steady-state case.
A. First, a well converged steady-state solution must be obtained.

This solution then becomes the starting point for the unsteady solution.
B. The restart is left set to true, however, to reset the time counter

to time=O, the UNSTST variable must be set to true for several iterations and
then back to false for normal time counting.

C. As the unsteady motion begins to march in time Flow data and
Grid position data may be stored at user determined angles of attack. To store
flow data at cx=12.5 0, a=13.5', cx=14.5, etc... enter the data shown in Table 4.
into the input file.

TABLE 4. ANGLE OF ATTACK INPUT
AI I11A2 I1A3 [IA4 11A5 1IA6 IA7 IIA8 I1A9 IIA10 I

125011350 11450 11550 11570 1590 11610 11630 11630 11805

D. The Flow data and the Grid data at each c will be stored in data
files FOR02I.DAT through FOR03O.DAT. The Grid and Flow data can be
separated using a simple fortran code that reads the data and then writes the
data to two separate files. Splgf.f inputs the desired file ID and outputs a Grid
file and Flow file.
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a. Sample Input to Ns2.f
MACH, ALFAO, ALFAI, ALFARE, REDFRE, REYNOLDS
0.300, 0.00, 15.54, 0.00, 0.01272, 2.70
ED2X, ED2Y, ED4X, ED4Y, ED
0.00, 0.00, 0.030, 0.030, 2.0
DT, COUR, NITER, NEWTIT

0.0020, 2100, 50, 1
RSTRT, OSCIL, RAMP, NPER, TSHIFT
true, false, true, 3000, -0.5

TIMEAC, IMPLBC, EXPLBC, CIRCOR
1, false, true, false

VISC, BLTM, JKTM, RNGTM
true, true, false, false
ITEL, ITEU

31, 131
IAl, IA2, IA3, IA4, IA5, IA6, IA7, IA8, IA9, IAl0

1250,1350,l450,1550,1570,1590,1610,1630,1630, 1805
false

UNSTST (If true Time = 0.,Set TRUE only when unsteady motion starts from steady
steady state, TRUE for steady-state ok, but for unsteady restarts must be FALSE
for proper recording of unsteady motion)

Mach Free stream Mach number
AlfaC Angle of attack, also mean angle of attack for unsteady
Alfal Ar.olitude of Oscillatory motion
Alfare Reference angle
Redfre Reduced frequency k = omege * c / 2U
Reynolds Reynolds number Re = cU/n

ED2x X-direction 2nd order explicit smoothing ( e2x = 0.00 subsonic,
0.25 < e2x < 0.50 transonic)

ED2z Z-direction 2nd order explicit smoothing ( e2z = 0.00 subsonic,
0.10 < e2z < 0.20 transonic)

ED4x X-direction 4nd order explicit smoothing ( e4x = 0.03 subsonic,
e4x = 0.05 transonic)

ED4z Z-direction 4nd order explicit smoothing ( e4z = 0.03 subsonic,
ED Scaling of Implicit smoothing
ISPEC Spectral radious parameter

Dt Time stec
Cour Courant number Cu = dt * L max
Niter Numrber of Iteration in this run
Newtit Newton subiteration within each timestep

RSTPT Restart
OSCIL Oscillatory motion A(t) = AO + Al * sin k * X )
RAMr : Ramp motion
NPER Number of time steps in one period of osfillati_., - -r
TSHIFT Time shift in radians to start oscilation for an: a(t)

TIMEAC Time accurate Tacc=l and for Jacobian Scaled --
IMPLBC Implicit wall BC Treatment
EXPLBC Explicit wall BC Treatment
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VISC Only laminar viscosity
TURBL Baldwin-Lomax eddy viscosity
JKTM Johnson-King eddy viscosity
RNGTM RNG eddy viscosity

ITEL, ITEU Lower and Upper trailing edge I locations
IAI etc. Write out (IAn/100) angles of attack in units

61 - 70

Read grid from unit fort.ll and the flow from unit fort.31
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b. Sample Output from Ns2.f

Grid dimensions : 161x64
Mach = 0.30000
Ao = 0.00000 Al = 16.00000 k = 0.01272
Re = 0.2700E+07 Dt = 0.01829 Cu= 15.00000

Dimpl = 2.00000
D2x = 0.00000 D2z = 0.00000
D4x = 0.03000 D4z = 0.03000

Restart = T
Oscil = F
Ramp = T

Itel = 31 Iteu = 131 Ile = 81

Timeac = T
BC impl = F
BC expl = T

Cour = 4289.7352743S7
L max = 234539.9275225
Dt = 0.01829000

It drmax dIma:-: dvra:-- demax ir kr
1950 0.849290E-06 0.1C 7 934E-05 C.19543E-05 r 0.17420CE-05 119 63

Ni= 1 0.113997E-06 0.302620E-06 0.448250E-06 0.196797E-C6

it = 1950 Time = 35.665500 omega = 0.007632 phase = 0.043322
Alfa(t) = 15.596 Cl = 1.425268 Cd = 0.137214 Cm = 0.003384

2000 0.778403E-06 0.107038E-05 0.191827E-05 0.158330E-05 118 63
Ni= 1 0.113176E-06 0.297453E-06 0.450476E-06 0.197668E-CC

it = 2000 Time = 36.589000 omeca = C.007632 phase = 0.0"44433
Alfa(t) : IE.996 Cl : 1.453050 Cd = 0.146989 Cm : C.C1£2
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B. DIRECTIONS FOR THE EXECUTION OF U2DIIF.F

1. Unsteady Case

A. A complete description of the input and output parameters can be

found in Teng.

TABLE 5. U2DIIF.F INPUTS/OUTPUTS
FILE COMMENTS
FOROO .DAT Input
U2diif.out Output

B.) For a unix based machine the code is executed as follows:

U2diif > U2diif.out

Note: The original Fortran code can be modified to store desired output in

separate data files by inserting a WRITE (9,*) statement inside the required do-

loop. (Example: Cp vs x/c data could be stored in a data file FOR009.DAT).

This requires some knowledge of Fortran programming.
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a. Sample Input to U2diif.f
4

AIRFOIL TYPE NACA 0012 AIRFOIL
NLOWER = 5 NUPPER = 50

0, 50, 50
12
0.00, 15.54, 10.67, 0.00, 0.25, 0.00, 0.00
0.00, 0.00, 0.00
11.00, 0.010, 0.0001, 0.00
108, 294, 487, 584, 802, 891, 1006, 1007, 1283, 1554
ITITLE
INPUT TITLE (ITITLE = NO. LINE)
IFLAG NLOWER NUPPER
AIRFOIL TYPE
ALPI DALP TCON FREQ PIVOT UGUST VGUST
DELHX DELHY PHASE
TF DTS TOL TADE
ial ia2 ia3 ia4 ia5 ia6 ia7 ia8 ia9 ial0
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b. Sample Output to U2diif.f

DATA FROM fort.l: (IRIS) OR FOR001.DAT: (STAs.i'jL

AIRFOIL TYPE NACA 0012 AIRFOIL
NLOWER = 50, NUPPER = 50

IFLAG (0:NACA, 1:INPUT) = 0
NO. PANELS UPPER SURFACE = 50
NO. PANELS LOWER SURFACE = 50

INITIAL ANGLE OF ATTACK = 0.0000
FINAL ANGLE OF ATTACK = 15.5400
RISE TIME - 10.6700
REDUCED FREQ. FOR OSCIL 0.0000
PIVOT POINT = 0.2500
STREAMWISE GUST VELOCITY = 0.0000
PERPENDICULAR GUST VELOCITY = 0.0000

X AMPLITUDE OF TRANS OSCILL. = 0.0000
Y AMPLITUDE OF TRANS OSCILL. = 0.0000
PHASE OF TRANS OSCILL. = 0.0000

FINAL TIME - 11.0000
INITIAL TIME STEP FOR S.S. 0.0100
TOLERANCE FOR CONVERGENCE = 0.0001
FACTOR BY WHICH DTS ADJUSTED : 0.0000

COORDINATES OF AIRFOIL NODES

X/C Y/C
1.000003 0.000000
0.999013 -0.000141
0.996057 -0.000562

0.984292 0.002222
0.991144 0.001258
0.996057 0.000562
0.999013 0.000141
1.000000 0.000300

AIRFOIL PERIMETER LENGTH : 2.039290

STEADY FLOW SOLUTiO AT ALPHA = 0..000003

J X(J) Q(J) GA1A CP(J) V(J)
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1 0.999507 -0.112073 0.000000 0.433845 -0.752433
2 0.997535 -0.120842 0.000000 0.341896 -0.811236
3 0.993600 -0.126091 0.000000 0.279513 -0.848815
4 0.987718 -0.129448 0.000000 0.232223 -0.876229
5 0.979910 -0.131624 0.000000 0.193468 -0.898071
6 0.970208 -0.132948 0.000000 0.160181 -0.916416
7 0.958651 -0.133600 0.000000 0.130705 -0.932360
8 0.945283 -0.133699 0.000000 0.104047 -0.946548
9 0.930159 -0.133328 0.000000 0.079564 -0.959393

10 0.913336 -0.132558 0.000000 0.056812 -0.971179

90 0.894883 -0.131445 0.000000 0.035461 0.982110
91 0.913336 -0.132561 0.000000 0.056813 0.971178
92 0.930159 -0.133333 0.000000 0.079566 0.959393
93 0.945283 -0.133704 0.000000 0.104048 0.946547
94 0.958651 -0.133607 0.000000 0.130706 0.932359
95 0.970208 -0.132956 0.000000 0.160183 0.916415
96 0.9/9910 -0.131634 0.000000 0.193471 0.898070
97 0.987718 -0.129461 0.000000 0.232226 0.876227
98 0.993600 -0.126109 0.000000 0.279518 0.848812
99 0.997535 -0.120869 0.000000 0.341902 0.811232

100 0.999507 -0.112063 0.000000 0.433845 0.752433

COMPARISON OF GAMMAS

GAMIA FROM KUTTA CONDITION: -0.00000024
GAMMA FROM CONTOUR INTEGR (TRAIL EDGE): -0.00000025
GkA-- FROM CONTOUR INTEGR (MIDPOINTS): -0.00000025
G"-A FROM BOX INTEGR (OFF THE CONTOUR: -0.00000024
GAWA FROM PRECISE CONTOUR INTEG (6 PT): -0.00030024

CD = 0.000324 CI. = -0.000001 CM = 0.000001

*** BEGIN UNSTEADY FLOW SOLUTION *

TIME STEP TK = 0.010000 TK - TP41 = 0.00

ALPHA(T) : 0.000041 ONEGA(T) = -0.000143
U(T) = 0.000000 V (T) = -0.000036

NITR VXW VfW WAKE THETA GA:,-
0 1.000000 0.000000 0.0100C0 0.000000 -0.24006E-0
1 0.83473C C.000244 0.008347 0.000292 0
2 0.827773 0.000255 0.008278 0.000309 0.4123C7E--
3 0.827452 0.000256 0.008275 0.000309 0.411209-Of:

CONVERGED SOLUTION OBTAINED AFTER NITR = 3
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J X(J) Q(J) GAMMA CP(J) V(J) PREV PHI(J) CURR PHI(J)
1 0.999507 -0.107774 0.000004 0.432728 -0.753023 0.032660 0.032661
2 0.997535 -0.117297 0.000004 0.341094 -0.811709 0.033045 0.033045
3 0.993600 -0.123077 0.000004 0.279152 -0.849194 0.033663 0.033661
4 0.987718 -0.126843 0.000004 0.232351 -0.876535 0.034408 0.034404
5 0.979910 -0.129345 0.000004 0.194095 -0.898321 0.035211 0.035205
6 0.970208 -0.130932 0.000004 0.161293 -0.916622 0.036018 0.036011
7 0.958651 -0.131801 0.000004 0.132278 -0.932531 0.036785 0.036776
8 0.945283 -0.132080 0.000004 0.106051 -0.946691 0.037475 0.037463
9 0.930159 -0.131864 0.000004 0.081967 -0.959514 0.038055 0.038041

10 0.913336 -0.131225 0.000004 0.059576 -0.971280 0.038497 0.038482

90 0.894883 -0.132662 0.000004 0.032373 0.982025 0.038778 0.038794
91 0.913336 -0.133893 0.000004 0.054048 0.971077 0.038497 0.038511
92 0.930159 -0.134798 0.000004 0.077163 0.959272 0.038054 0.038067
93 0.945283 -0.135322 0.000004 0.102044 0.946404 0.037474 0.037486
94 0.958651 -0.135406 0.000004 0.129134 0.932188 0.036785 0.036794
95 0.970208 -0.134972 0.000004 0.159071 0.916209 0.036018 0.036025
96 0.979910 -0.133914 0.000004 0.192844 0.897820 0.035210 0.035216
97 0.987718 -0.132066 0.000004 0.232097 0.875921 0.034407 C.034411
98 0.993600 -0.129123 0.000004 0.279879 0.E48433 0.033662 0.033664
99 0.997535 -0.124414 0.000004 0.342703 0.810760 0.033045 0.033044

100 0.999507 -0.116362 0.000004 0.434960 0.751843 0.032659 0.032658

COMPARISON OF GAMMAS

GAMMA FROM KUTTA CONDITION: 0.00000411
GAMMA FROM CONTOUR INTEGR (TRAIL EDGE): -0.00000165
GAMMA FROM CONTOUR INTEGR (MIDPOINTS): -0.00000137
GAMMA FROM BOX INTEGR (OFF THE CONTOUR): 0.00000462
GAMMA FROM PRECISE CONTOUR INTEG (6 PT): 0.00000385

CD = 0.000324 CL = 0.005136 CM = -0.003050

TRAILING VORTICES DATA

M X(M) Y(M) CIRC

1 1.004137 0.000001 -0.000009

TIME STEP TK = 0.020000 TK - TKM1 0.01000

ALPHA(T) = 0.000164 OMEGA(T) = -0.000285

U(T) = 0.000000 V(T) = -0.000071

NITR VXW VYW WAKE THETA GAN2MA
0 0.827452 0.000256 0.008275 0.000309 0.411158E-05
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CONVERGED SOLUTION OBTAINED AFTER NITR = 0

J X(J) 0(J) GAMMA CP(J) V(J) PREV PH:(J) CURR PHI(J)
1 0.999507 -0.104926 0.000011 0.432928 -0.753413 0.032661 0.032658
2 0.997535 -0.114799 0.000011 0.341275 -0.812045 0.033045 0.C33042

20 0.669285 -0.109493 0.000011 -0.121525 -1.061102 0.031441 0.031419
21 0.639427 -0.105975 0.000011 -0.138604 -1.069082 0.029361 0.029339
22 0.609018 -0.102029 0.000011 -0.155875 -1.077078 0.027013 0.026992
23 0.578179 -0.097571 0.000011 -0.173377 -1.085108 0.024398 0.024378

171



C. DIRECTIONS FOR THE EXECUTION OF INCOMPBL.F

1. Steady State Case

A. Execution of Incompbl.f is straight forward. First edit the input files,

FOROO.DAT and incompbl.dat, and set the desired flow conditions.

TABLE 6. INCOMPBL.F INPUTS
INPUT COMMENTS
incompbl.dat IWAKE-Flag Wake Calulation

NXT
NW-No. of point in wake
ITREND-No. of Iterations
ITR(l)-Transition Flag Upper Surface
ITR(2)-Transition Flag Upper Surface
ISWPMX
RL-Reynolds Number
XCTR(1)-Transition Location Upper
Surface
IP-Print flag

FOR001.DAT Input AOA, pivot point and Airfoil
Coordinates, and No. of Panels

B.) For a unix based machine the code is executed as follows:

incompbl <incompbl.dat> incompbl.out.

TABLE 7. INCOMPBL.F OUPUT
OUTPUT I COMMENTS
incompbl.out Flow data

Note: The original Fortran code can be modified to store desired output in

separate data files by inserting a WRITE (24,*) statement inside the required do-loop.

(Example: Cp vs x/c data could be stored in a data file FOR024.DAT). This requires some

knowledge of Fortran Programming.
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a. Sample Input to Incompbl.f
File Named fort.1 of FOROO.DAT

3
C
C NACA 0012 AIRFOIL
c

ALPI PIVOT
4.000000 0.250000
NLOWER NUPPER

50 50
X/C

1.00000 0.98000 0.96000 0.94000 0.92000 0.90000
0.88000 0.86000 0.84000 0.82000 0.80000 0.78000
0.76000 0.74000 0.72000 0.70000 0.68000 0.66000
0.64000 0.62000 0.60000 0.58000 0.56000 0.54000
0.52000 0.50000 0.48000 0.46000 0.44000 0.42000
0.40000 0.38000 0.36000 0.34000 0.32000 0.30000
0.28000 0.26000 0.24000 0.22000 0.20000 0.18000
0.16000 0.14000 0.12000 0.10000 0.08000 0.06000
0.04000 0.02000 0.00000 0.02000 0.04000 0.06000
0.08000 0.10000 0.12000 0.14000 0.16000 0.18000
0.20000 0.22000 0.24000 0.26000 0.28000 0.30000
0.32000 0.34000 0.36000 0.38000 0.40000 0.42000
0.44000 0.46000 0.48000 0.50000 0.52000 0.54000
0.56000 0.58000 0.60000 0.62000 0.64000 0.66000
0.68000 0.70000 0.72000 0.74000 0.76000 0.78000
0.80000 0.82000 0.84000 0.86000 0.88000 0.90000
0.92000 0.94000 0.96000 0.98000 1.00000

Y/C
-0.00126 -0.00403 -0.00674 -0.00938 -0.01196 -0.01448
-0.01694 -0.01935 -0.02170 -0.02399 -0.02623 -0.02842
-0.C3056 -0.03264 -0.03467 -0.03664 -0.03856 -0.04042
-0.04222 -0.04396 -0.04563 -0.04723 -0.04878 -0.05026
-0.05165 -0.05294 -0.05415 -0.05530 -0.05634 -0.05726
-0.05803 -0.05868 -0.05923 -0.05966 -0.05995 -0.06006
-0.05997 -0.05966 -0.05911 -0.05838 -0.05737 -0.05607
-0.05444 -0.05236 -0.04990 -0.04683 -0.04309 -0.03842
-0.03231 -0.02382 0.00000 0.02382 0.03231 0.03842
0.04309 0.04683 0.04990 0.05236 0.05444 0.05607
0.05737 0.05838 0.05911 0.05966 0.05997 0.06006
0.05995 0.05966 0.05923 0.05868 0.05803 0.05726
0.05634 0.05530 0.05415 0.05294 0.05165 0.05026
0.04878 0.04723 0.04563 0.04396 0.04222 0.04042
0.03856 0.03664 0.03467 0.03264 0.03056 0.02842
0.02623 0.02399 0.02170 0.01935 0.01694 C.01442
0.01196 0.00938 0.00674 0.00403 0.00126
File named incompbl.dat

IWAKE NXT NW I TREND
0 161 37 40

ITR(1) ITR(2) ISWPVNi RL XCTR(a)
0 0 1 3000000.0 0.1000

IP
1
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b. Sample Output from Incompbl.f
C
C NACA 0012 AIRFOIL
C

INPUT DATA FOR INVISCID-FLOW CALCULATIONS

ALPI= 4.0000 PIVOT= 0.2500
NLOWER= 50 NUPPER= 50

COORDINATES OF THE BODY
X/C
1.000000 0.980000 0.960000 0.940000 0.920000 0.900000
0.880060 0.860000 0.840000 0.820000 0.800000 0.780000
0.760000 0.740000 0.720000 0.700000 0.680000 0.660000
0.640000 0.620000 0.600000 0.580000 0.560000 0.540000
0.520000 0.500000 0.480000 0.460000 0.440000 0.420000
0.400000 0.380000 0.360000 0.340000 0.320000 0.300000
0.280000 0.260000 0.240000 0.220000 0.200000 0.180000
0.160000 0.140000 0.120000 0.100000 0.080000 0.060000
0.040000 0.020000 0.000000 0.020000 0.040000 0.060000
0.080000 0.100000 0.120000 0.140000 0.160000 0.180000
0.200000 0.220000 0.240000 0.260000 0.280000 0.300000
0.320000 0.340000 0.360000 0.380000 0.400000 0.420000
0.440000 0.460000 0.480000 0.500000 0.520000 0.540000
0.560000 0.580000 0.600000 0.620000 0.640000 0.660000
0.680000 0.700000 0.720000 0.740000 0.760000 0.780000
0.800000 0.820000 0.840000 0.860000 0.880000 0.900000
0.920000 0.940000 0.960000 0.980000 1.000000

Y/C

-0.001260 -0.004030 -0.006740 -0.009380 -0.011960 -0.014480
-0.016940 -0.019350 -0.021700 -0.023990 -0.026230 -0.028420
-0.030560 -0.032640 -0.034670 -0.036640 -0.038560 -0.040420
-0.042220 -0.043960 -0.045630 -0.047230 -0.048780 -0.050260
-0.051650 -0.052940 -0.054150 -0.055300 -0.056340 -0.057260
-0.058030 -0.058680 -0.059230 -0.059660 -0.059950 -0.060060
-0.059970 -0.059660 -0.059110 -0.058380 -0.057370 -0.056070
-0.054440 -0.052360 -0.049900 -0.046830 -0.043090 -0.038420
-0.032310 -0.023820 0.000000 0.023820 0.032310 0.038420
0.043090 0.046830 0.049900 0.052360 0.054440 0.056070
0.057370 0.058380 0.059110 0.059660 0.059970 0.060060
0.059950 0.059660 0.059230 0.058680 0.058030 0.057260
0.056340 0.055300 0.054150 0.052940 0.051650 0.050260
0.048780 0.047230 0.045630 0.043960 0.042220 0.040420
0.038560 0.036640 0.034670 0.032640 0.030560 0.028420
0.026230 0.023990 0.021700 0.019350 0.016940 0.014480
0.011960 0.009380 0.006740 0.004030 0.001260

1 INVISCID FLOW RESULTS

PANEL XP YP CP
1 0.99000E+00 -0.14950E-02 0.25519E+00
2 0.97000E 00 -0.44813E-02 0.17805E+00
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3 0.95000E+00 -0.74415E-02 0.13179E+00
4 0.93000E+00 -0.10321E-01 0.97803E-01
5 0.91000E+00 -0.13061E-01 0.74658E-01
6 0.89000E+00 -0.15646E-01 0.60117E-01
7 0.87000E+00 -0.18113E-01 0.49465E-01
8 0.85000E+00 -0.20502E-01 0.39706E-01
9 0.83000E+00 -0.22829E-01 0.30916E-01

10 0.81000E+00 -0.25104E-01 0.21877E-01

90 0.79000E+00 0.27319E-01 -0.12424E+00
91 0.81000E+00 0.25096E-01 -0.10630E+00
92 0.83000E+00 0.22823E-01 -0.88121E-01
93 0.85000E+00 0.20492E-01 -0.69791E-01
94 0.87000E+00 0.18084E-01 -0.49935E-01
95 0.89000E+00 0.15564E-01 -0.24583E-01
96 0.91000E+00 0.12899E-01 0.93575E-02
97 0.93000E+00 0.10105E-01 0.51153E-01
98 0.95000E+00 0.72366E-02 0.99432E-01
99 0.97000E 00 0.43440E-02 0.15874E+00

100 0.99000E+00 0.14480E-02 0.25519E+00
INVISCID WAKE RESULTS

PANEL XP YP CP
101 0.10033E+01 0.26712E-04 0.34783E+00
102 0.10110E+01 0.93657E-04 0.26481E+00
103 0.10209E+01 0.19595E-03 0.21845E+00
104 0.10340E+0l 0.35320E-C3 0.18376E+00
105 0.10510E+01 0.59334E-03 0.15510E+00
106 0.10732E+01 0.95766E-03 0.13035E+00
107 0.11023E+01 0.15069E-02 0.10857E+00
108 0.11402E+01 0.23702E-02 0.89285E-01
109 0.11897E+01 0.35565E-02 0.72269E-01
110 0.12543E+01 0.53713E-02 0.57416E-01
1il 0.13387E+01 0.80381E-02 0.44666E-01
112 0.14489E+01 0.11926E-01 0.33948E-01
113 0.15928E+01 0.17545E-01 0.25162E-01
114 0.17806E+01- 0.25591E-01 0.18168E-01
115 0.20259E01 0.36999E-01 0.12767E-01
116 0.23462E+01 0.53013E-01 0.87308E-02
117 0.27643E-101 0.75273E-01 0.58084E-02
118 0.33703E+01 0.10592E+00 0.37624E-02
119 0.38079E+01 0.13479E+00 0.26992E-02

CL = 0.47937E+00

INPUT DATA FOR BOUNDARY-LAYER CALCULATIONS

IWAKE NXT r4 ITREND
0 11 3- 40

ITR(1) ITR(2) ISWP!M. 10**-6*RL XCTR(1)
0 0 1 3.00 0.10

IP
1
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************** CYCLE 40 *************

SUMMARY OF THE DRAG, LIFT AND PITCHING MOMENT
COEFFICIENTS WITH THE CYCLE

CD,CL AND CM ARE EVALUATED FROM THE INTEGRATION OF CP

CYCLE CD CL CM
1 0.001978 0.001684 0.427162
2 0.003184 0.001730 0.427756
3 0.002734 0.001684 0.427162
4 0.002422 0.001730 0.427770
5 0.002227 0.001684 0.427157

35 0.001684 0.427157 0.004733
36 0.001731 0.427790 0.004494
37 0.001664 0.427165 0.004731
38 0.001731 0.427807 0.004491
39 0.001684 0.427167 0.004731
40 0.001731 0.427822 0.004488

BOUNDARY LAYER PROPERTIES FOR THE LAST CYCLE

----- UPPER SURFACE-------

XCTR= 0.134E<00

N-X XC XS CF :LS UE CP IT

76 0.00294 0.003411 0.06394 0.00005 0.15840 0.97491 3
77 0.00140 0.006562 0.03670 0.00005 0.33362 0.88870 2
78 0.00056 0.009021 0.02384 0.00005 0.48286 0.76685 2
79 0.00018 0.010828 0.01910 0.00005 0.59624 0.64450 2

158 0.98712 1.018435 0.C0046 0.007iI 0.87987 0.22583 5
159 0.99209 1.023461 0.00035 0.00749 0.87320 0.23751 4
160 0.99639 1.027802 0.00025 0.00785 0.86751 0.24742 5
161 1.00000 1.031453 0.00019 0.00818 0.86283 0.25553 5

----- LOWER SURFACE------

XCTR= 0.677E<0

NX XC XS CF DLS UE CP IT

87 0.0054C 0.000436 0.47509 0.00006 0.02025 0. 99 5, 2
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88 0.00888 0.004971 0.15459 0.00006 0.18949 0.96409 2
89 0.01333 0.010187 0.02621 0.00007 0.36027 0.87021 2
90 0.01841 0.016077 0.01498 0.00007 0.53294 0.71597 3

158 0.98713 0.992288 0.00204 0.00181 0.89064 0.20676 2
159 0.99210 0.997313 0.001:6 0.00191 0.88051 0.22471 2
160 0.99639 1.001654 0.00171 0.00202 0.87121 0.24100 2
161 1.00000 1.005305 0.00159 0.00212 0.86310 0.25505 2

177



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52
Naval Postgraduate School
Monterey, California 93943-5100

3. Dr. M.F. Platzer
Dept. of Aeronautics and Astronautics, Code AA/PL
Naval Postgraduate School
Monterey, California 93943-5002

4. Dr. J. A. Ekaterinaris 5
NASA Ames Research Center (M.S. 258-1)
Moffet Field, California 94035

5. Lt Jeffrey D. Clarkson
226 Orange Ave. #102
Coronado, California 92118

178


